ROLL NO.

Code: AC58/AT58/AC106/AT106

Subject: COMPUTER ORGANIZATION

AMIETE – CS/IT (Current & New Scheme)

Time: 3 Hours

ล

December 2016

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Ouestions answer any FIVE Ouestions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: Q.1

- The full form of CPSR is
- (A) Current Program Special Register
- (**B**) Control Program Status Register
- (C) Current Program Status Register
- (D) Conditional Program Special Register
- b. The content of a 4-bit register is initially 1101. The register is shifted 2 times to the right with the serial input being 1011101. What is the content of the register after each shift?

(A) 1110, 0111	(B) 0001, 1000
(C) 1101, 1011	(D) 1001, 1001

- c. The control unit controls other units by generating (A) Control signals (B) Timing signals (C) Transfer signals (D) Command Signals
- d. A two input NOR gate gives logic high output only when (A) one input is high (**B**) one input is low (C) Both inputs are low (**D**) Both inputs are high
- e. Interrupts which are initiated by an instruction are (A) internal (**B**) external (C) hardware (**D**) software
- f. In a program using subroutine call instruction, it is necessary to (A) Initialise program counter (B) Clear the accumulator
 - (C) Reset the microprocessor
- - (**D**) Clear the instruction register

ROLL NO. _____

Code: AC58/AT58/AC106/AT106 Subject: COMPUTER ORGANIZATION

g.	When the I/O devices and the men arrangement is called as	hen the I/O devices and the memory space share the same address space, the rangement is called as			
	(A) Memory-mapped I/O	(B) Address controlled I/O			
	(C) Programmed memory I/O	(D) Programmed I/O			
h.	. How is data stored in the main memory?				
	(A) Bytes	(B) Words			
	(C) Pages	(D) Both (A) and (B)			
i.	4 bit CLA addition process requires				
	(A) 4 gate delay	(B) 3 gate delay			
	(C) 1 XOR gate delay	(D) 2 gate delay			
j.	The number 100110 ₂ is numerically (A) 26 ₁₀ (C) 46 ₈	 requivalent to (B) 36₁₀ (D) 2A2₁₆ 			

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	What are the different performance measures used to represent a computer system's performance?	(6)
	b.	Describe in brief the different generations of computer.	(4)
	c.	Explain basic instruction types with the help of examples.	(6)
Q.3	a.	Write a program that can evaluate the expression X = (A - B) * ((C - D * E) / F) in a single-accumulator processor. Assume that the processor has Load, Store, Multiply, Add instructions, and that all values fit in the accumulator.	(4)
	b.	Explain how stack is used for nested subroutines. Show the flow of execution using a suitable example.	(8)
	c.	Explain the following addressing modes with examples: (2) (i) Immediate mode (ii) Relative mode	×2)
Q.4	a.	When a DMA module takes control of bus and while it retains control of bus, what does the processor do?	(6)
	b.	Describe the three types of Input / Output techniques, viz., Programmed Input /Output Interrupt driven Input / Output and Direct Memory Access.	10)

Code: AC58/AT58/AC106/AT106 Subject: COMPUTER ORGANIZATION

Q.5	a.	Describe the main phases involved in the operation of the SCSI bus.	(8)
	b.	Describe the Peripheral Component Interconnect (PCI) Bus Standards.	(4)
	c.	Explain how USB support Isochronous data?	(4)
Q.6	a.	Explain briefly SRAM and DRAM. Mention the differences between these.	(5)
	b.	Why RAM traditionally has been organized as only one bit per chip where as ROM is organized with multiple chips per bit?	(5)
	c.	Explain the cache with two-way set-associative addressing. Give an illustration.	(6)
Q.7	a.	Draw a flow chart to explain how addition and subtraction of two fixed point numbers can be done. Give an example to explain it.	(8)
	b.	How virtual memory address translation is done? Explain with the help of a diagram. Compare cache techniques and virtual memory techniques.	6+2)
Q.8	a.	Multiply the following pairs of signed 2's-complement numbers using: (i) Booth algorithm (ii) Bit-pairing of the multiplier A = 010111 and B = 110110	
		Assume A is the multiplicand and B is the multiplier. (5	5+5)
	b.	Discuss any two IEEE standard floating point formats. Explain Add/Subtract and multiply rules on floating point numbers.	(6)
Q.9	a.	With suitable figure, discuss multiple-bus organization.	(6)
	b.	Distinguish between horizontal and vertical microinstruction.	(5)
	c.	Write the actions required to execute the instructions Move(R1), R2.	(5)