ROLL NO.

AMIETE - IT (OLD SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. Refresh rate on a random access device depends on
 - (A) The architecture of the system.
 - (**B**) The colour of the CRT.
 - (C) The number of lines to be displayed.
 - **(D)** The size of the monitor.
- b. In the Cohen & Sutherland clipping algorithm, if the out codes of two end points of line are non zero but their AND operation gives (0000) then the line is

(A) completely invisible	(B) completely visible
(C) partially visible	(D) incomplete data

c. This projection is formed by parallel projectors from a center of projection at infinity that intersect the plane of projection at an oblique angle.

(A) Orthographic	(B) Axonometric
(C) Oblique	(D) Isometric

d. Intra and Inter compression scheme is used in

(A) Text	(B) Images
(C) Video	(D) All of these

e. Having a jagged or stair step appearance of lines is known as

(A)	Scanning	(B) Aliasing
(C)	Anti-aliasing	(D) Persistence

ROLL NO.

1 (1, 1 0

Code: AT14 Subject: IMAGE PROCESSING & COMPUTER GRAPHICS

T T 71

Ι.	1. Which refresh procedure is used in 1 v sets to avoid flicker?			
	(A) Horizontal retrace(C) Interlaced refresh	(B) Vertical retrace(D) None of the above		
g	g. Image compression techniques that reduce only coding redundancy a			
	(A) Transform coding techniques(C) Region splitting and Merging	(B) Lossy compression techniques(D) Lossless compression techniques		
h	. Morphology refers to			
	(A) Dilation and Erosion(C) Probe and Dilation	(B) Erosion and Probe(D) Erosion, Dilation and Probe		
i.	This algorithm is applicable to an characteristics can be calculated.	y object for which depth and shading		
	(A) Z-buffer(C) Midpoint circle	(B) Cohen-Sutherland(D) DDA		
j.	Two-principal vanishing point proje	ction occurs when		
	 (A) the projection plane intersects ex (B) the projection plane is perpendit (C) the projection plane is perpendic (D) the projection plane intersects a 	xactly two of its principal axes. cular to two axes. cular to one axis. ll the three axis.		

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Write short notes on (i) Scanners	
		(ii) Data gloves	(8)
	b.	Explain the algorithm to generate a circle using the mid-point technique.	(8)
Q.3	a.	Determine the transformation matrix corresponding to a 2D reflection about (i) a horizontal line (ii) an arbitrary line.	n (8)
	b.	What is image enhancement? How spatial filter is used for the purpose?	(8)
Q.4	a.	Explain the Z-buffer algorithm for visible surface detection.	(8)
	b.	Write a note on homogeneous coordinates system.	(8)
Q.5	a.	What is importance of a color model? Explain the RGB color models with necessary equations and applications.	h (4)
AT14	/ DE	EC 2011 2 AMIETE - IT (OLD SCHEA	۸E)

ROLL NO.

Code: AT14 Subject: IMAGE PROCESSING & COMPUTER GRAPHICS

	b.	Describe the JPEG continuous still image compression standard with a block diagram. (8)	3)
	c.	Write a note on merging technique. (4	1)
Q.6	a.	What is image acquisition? Explain different techniques employed for image sensing and acquisition with suitable diagrams.	3)
	b.	What is a histogram? Explain how histogram statistics are used for image enhancement.	3)
Q.7	a.	Describe two-dimensional Fourier transform and explain the following properties: (i) Translation (ii) Separability (8	8)
	b.	What are visible surface detection algorithms? Explain the steps of a depth buffer algorithm with necessary figures.	3)
Q.8	a.	Explain the following:(i) Parallel projection(ii) Perspective projection	8)
	b.	Given a clipping window $A(0,0)$, $B(40, 0)$, $C(40, 20)$, $D(0, 20)$, use Cohen Sutherland clipping algorithm to clip the line $P(-10, 10) - Q(30, 30)$ against this window.	8)
Q.9	a.	Explain the following coding techniques with examples	
		(i) Line detection in an image(ii) Thresholding (8)	3)
	b.	 (i) Find the mirror reflection of the triangle P(10, 50), Q(40, 60), R(10, 80) about the line x = 5. (ii) Work out the transformation to rotate the above triangle about the 	
		point P clockwise by 90° . (8)	3)

3