ROLL NO.

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

AMIETE - ET (NEW SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:	(2×10)
-----	--	--------

a. Optical communication generally takes place at

(A) 10^5 Hz	(B) 10^{14} Hz
(C) 1000 Hz	(D) 10 ⁷ Hz

b. If the output power in an optical fibre is half of that of input power, then the loss is

(A) 10log ₁₀ 2	(B) $10\log_{10}\frac{1}{2}$
(C) $20\log_{10} 2$	(D) $20\log_{10}\frac{1}{2}$

c. The type of emission that takes place in a LASER is

(A) Spontaneous	(B) Stipulated
(C) Stimulated	(D) Direct

d. A fiber connector is generally

(A) Demountable joint	(B) An optical bend
(C) A permanent bond	(D) An optical source

e. To convert electrical input pulses to optical power pulses, we need

(A) LED or LASER	(B) Photodetector
(C) Decision circuit	(D) Filter

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

	f.	. To analyse the performance of Analog Systems, we usually calculate				
			 (A) ratio of peak-to-peak carrier power (B) ratio of rms carrier power to peak (C) ratio of rms carrier power to rms (D) ratio of half of carrier power to 	k-to-peak noise power noise power		
		g.	The two basic schemes for improving	g the reliability of data transmission are	e	
			(A) ART and FEB(C) ARP and CEF	(B) PRT and FEC(D) ARQ and FEC		
		h.	Wavelength division multiplexing is			
	 (A) technology of combining a number of bits (B) technology of combining a number of wavelengths onto the same fib (C) technology of transmitting different wavelengths together through diffibers (D) technology of dividing one channel into different time slots 					
	i. For a 2×2 fiber coupler, which of the following is not a measure of performan of optical coupler.			nance		
			(A) Splitting ratio(C) Crosstalk	(B) Insertion loss(D) Carrier to noise coupling		
	j. Polarization mode dispersion (PMD) is significant in			is significant in		
			(A) Multimode fiber only(C) Both (A) and (B)	(B) Single mode fiber only(D) None of the above		
			Answer any FIVE Questions Each question car	-		
Q.2 a. Explain the structure of a fiber. Why is r than that of core? What is graded index f				y less (8)		
		b.		nm on x-axis and attenuation in dB/km vs or the operating regions for optical	on y- (8)	
Ç	2.3	a.	Explain any <u>TWO</u> of the following:(i) Absorption in optical fibres(iii) Scattering losses	(ii) Bending losses	(8)	
		b.		that has an attenuation 0.8 dB/km at 13 f 200μ W of optical powers is launched		

ROLL NO. _

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

CO	ae:	AE/5 Subject: OPTOELECTRONICS AND COMMUNI	CATIO
	c.	What is mode coupling?	(4)
Q.4	a.	Differentiate (i) LED and LASER (ii) PIN and APD photo-detectors.	(8)
	b.	Consider an InGaAs PIN photodiode with a quantum efficiency Calculate the responsivity at 1300 nm & 1500 nm. Why is responsivity at 1550 nm?	
Q.5	a.	Which type of LED can be used to launch power in single mode fibers an	nd why? (6)
	b.	A single mode fiber has a normalized frequency V=2.40, a core refractive n_1 =1.47, a cladding refractive index n_2 =1.465 and a core diameter 2. Find the insertion losses of a fiber joint having a lateral offset of 1 μ m.	
Q.6	a.	What is Bit Error rate? How is it measured? What are the various error in an optical receiver?	sources (10)
	b.	Draw the schematic diagram of a typical optical receiver.	(6)
Q.7	a.	In broadband analog applications such as cable television (CATV) super we need to send multiple analog signals over the same fiber. What all tec could be used to achieve this? Compare them.	
	b.	Explain Carrier to Noise Ratio.	(4)
Q.8	a.	Obtain the RZ, NRZ, AMI and Manchester line codes for the data 1100010011101.	a stream (8)
	b.	Explain any two basic schemes for improving the reliability transmission.	of data (8)
Q.9		Explain any <u>TWO</u> of the following:	
		 (i) Semiconductor optical amplifier (ii) SONET (iii) Optical CDMA (iv) WDM 	(8+8)

3