ROLL NO.	

Code: AE68 Subject: EMBEDDED SYSTEMS DESIGN

AMIETE - ET (NEW SCHEME)

Time: 3 Hours DECEMBER 2011 Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. Microcontroller is an
 - (A) ASIC

- (B) ASIP
- (C) Customized FPGA
- **(D)** All the above
- b. Tasks must be able to communicate with one another to
 - (A) Coordinate their activities.
- (B) Share data
- (C) Discover error conditions
- **(D)** Both **(A)** and **(B)**
- c. The queues, mailboxes, and pipes are
 - (A) Same in all RTOS
- **(B)** Vary from one RTOS to another
- **(C)** Only few variations
- (**D**) None of the above
- d. The CACHE is usually designed using SRAM rather than DRAM because
 - (A) Cost
 - (B) Performance
 - (C) Appears on the same chip as a processor
 - **(D)** Both **(A)** and **(B)**
- e. The difference between Synchronous and Enhanced Synchronous DRAM is
 - (A) Clocking

(B) Bus Size

(C) Control Signals

- **(D)** None of the above
- f. Real time system engineers avoid C memory allocation functions because
 - (A) Typically Slow

- **(B)** Execution Times are un-predictable
- (C) Both (A) and (B)
- **(D)** None of the above

ROLL	NO.	

Code: AE68 Subject: EMBEDDED SYSTEMS DESIGN

	g. T	g. The Sensor networks are large-scale embedded systems that may contain				
		(A) Millions of nodes (C) Thousands of nodes	(B) Billions of nodes(D) both (A) and (C)			
	h. A node that transmits data among different types of networks is known as					
		(A) Router (C) Super Node	(B) Switch(D) Hyper Node			
		In the write through technique, when to	ever we write to the cache, we also w	rite		
		(A) Main memory (C) Both (A) and (B)	(B) I/O port(D) None of the above			
	j. (Components that are commonly used	in embedded software			
		(A) The State Machine (C) The Queue	(B) The Circular Buffer(D) All the above			
		Answer any FIVE Questions e Each question car				
Q.2			design metrics that may compete wire explanation of the reason behind			
		List and define the three main IC te each of the three different IC techno	echnologies. What are the benefits of logies?	using (8)		
Q.3	a.	Explain the programmer and Operat	ing System considerations in ESD.	(8)		
	b.	What are ASIP's? Explain popular A	ASIP's used in ESD.	(8)		
Q.4	a. Explain how PWM works and show the interface structure controlling a DC motor with a PWM.			(8)		
		Given an analog input signal whose volts, and an 8-bit digital encoding, volts. Then trace the successive-appropriate encoding.	calculate the correct encoding for 5	(8)		
Q.5	a.	Explain the difference between port	-based I/O and bus-based I/O.	(6)		
	b.	Explain the four popular serial bus p	protocols.	(10)		
Q.6	a.	Write a short note on RTOS semaph	ores	(8)		

ROLL NO	
---------	--

Code: AE68

Subject: EMBEDDED SYSTEMS DESIGN

	b.	Explain TASKS & TASKS STATES in RTOS.	(8)
Q.7	a.	What is cache mapping? Explain the direct mapping, fully associative mapping and set associative mapping techniques.	(8)
	b.	Draw and explain the Basic DRAM architecture.	(8)
Q.8	a.	Explain the standard features of events in RTOSs context.	(8)
	b.	In RTOS environments, what are the rules Interrupt routines must follow that do not apply to task code?	(8)
Q.9	a.	List the advantages of task structure in an ESD.	(8)
	b.	Discuss how to encapsulate Semaphores and Oueues.	(8)