Code: AE60 Subject: INSTRUMENTATION & MEASUREMENTS

AMIETE - ET (NEW SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. In measurement systems, which of the following static characteristics are desirable?

(A) Accuracy	(B) Sensitivity
(\mathbf{O}) D 1 '1'1'	(\mathbf{D}) A 11 C (1 1

- (C) Reproducibility (D) All of the above
- b. The sensitivity of a 200 μA meter movement which is to be used as a dc voltmeter is

(A)	5 k Ω /V	(B)	50 k Ω /V
(C)	0.5 k Ω /V	(D)	5 Ω/V

c. A 1 mA meter movement with an internal resistance of 100 Ω is to be converted into a 0-100 mA. The value of shunt resistance required is

(A) 101 Ω	(B) 1.01 Ω
(C) 0.101 Ω	(D) 101 kΩ

- d. LVDT stands for
 - (A) Linear Voltage Differential Transducer
 - (B) Linear Voltage Differential Transformer
 - (C) Linear Variable Differential Transducer
 - (D) Linear Variable Differential Transformer
- e. The maximum value of voltage is 8 V and the minimum value of voltage is 2 V in a standing wave pattern, the SWR is

A) 166	(B) 1.66
C) 1.6	(D) 0.166

(

1

Code: AE60 Subject: INSTRUMENTATION & MEASUREMENTS

f. Phospher coating for cathode ray tubes is provided on

(A) inside the surface(C) both (A) & (B)

(B) outside the surface(D) within the glass

g. Kelvin bridge is used to measure

(A)	Capacitance	(B)	Inductance
(C)	Resistance	(D)	None of these

h. A 4 ¹/₂ digital voltmeter is used for voltage measurements. Its resolution is

(A)	0.0001	(B)	0.001
(C)	0.01	(D)	0.1

- i. Thermocouples are
 - (A) active transducers
 - (**B**) passive transducers
 - (C) both active and passive transducers
 - (**D**) output transducers
- j. A true rms reading voltmeter uses two thermocouples in order

(A) to increase sensitivity

(B) that second thermocouple cancels out the non-linear effects of the first thermocouple

(C) to prevent drift in the dc amplifier

(**D**) all of the above

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. What are different types of errors in measurements? Explain all the errors by giving suitable examples. Discuss the means adopted to reduce these errors. (8)
 - b. Three resistors connected in parallel have following values:

R1 =250 Ω has a +0.025 fractional error

 $R2 = 500\Omega$ has a -0.036 fractional error

R3=375 Ω has a +0.014 fractional error

Determine (i) total resistance neglecting errors

- (ii) total resistance considering the error of each resistor
- (iii) fractional error of the total resistance based upon rated values (8)
- Q.3 a. Describe the working of a low voltage Schering bridge. Derive the equations for capacitance and dissipation factor. Draw the phasor diagram of the bridge under conditions of balance.
 (8)

Code: AE60 Subject: INSTRUMENTATION & MEASUREMENTS

- b. A Wheatstone bridge has ratio arms of 1000 Ω and 100 Ω and is being used to measure an unknown resistance of 25 Ω . Two galvanometers are available. Galvanometer 'A' has a resistance of 50 Ω and a sensitivity of 200 mm/ μ A and galvanometer 'B' has a resistance of 600 Ω and a sensitivity of 500 mm/ μ A. Which of two galvanometer is more sensitive to a small unbalance on the above bridge, and what is the ratio of sensitivities? The galvanometer is connected from the junction of the ratio arms to the opposite corners. (8)
- Q.4 a. With the help of a neat diagram, explain true rms voltmeter. (8)
 - b. Convert a basic D'Arsonval movement with an internal resistance of 50 Ω and a full scale deflection current of 2mA into a multirange dc voltmeter with voltage ranges of 0 10V, 0 50V, 0 100V and 0 250V. (refer Fig.1) (8)

Q.5 a. Explain with the help of a neat diagram the working of a Digital Frequency Meter. (8)

- b. The self capacitance of a coil is measured by a Q-meter. The circuit is set into resonance at 2 MHz and the tuning capacitor of the value of 460 pF. The frequency is now adjusted to 4 MHz and resonance conditions are obtained. Calculate the value of self-capacitance of the coil, if the turning capacitor is at 100 pF.
- Q.6 a. Draw the block diagram of AF sine and square wave generator. Also explain the function of each block. List the various controls on the front panel of the generator.(8)
 - b. Explain the basic block diagram of sampling oscilloscope and draw the waveforms at each block of a sampling oscilloscope. (8)
- Q.7 a. What is a bolometer? Give the procedure of measuring power using a bolometer in a bridge circuit. (8)
 - b. Explain with the block diagram, the working of a harmonic distortion analyzer. (8)
- Q.8 a. Discuss digital data recording. Also, State its advantages and disadvantages. (8)
 - b. Explain the working of X-Y recorder. Give its applications. (8)

Code: AE60 Subject: INSTRUMENTATION & MEASUREMENTS

- Q.9 a. What is a data acquisition system? Explain with the help of a block diagram of general data acquisition system. (8)
 - b. An ac LVDT has the following data: Input=6.3 V, output =-5.2V, range ±0.5in. Determine:
 - (i) The output voltage Vs core position for a core movement going from +0.45 in. to -0.30 in.
 - (ii) The output voltage when the core is -0.25 in from the centre. (8)