ROLL NO.

Code: AE59 Subject: CIRCUIT THEORY & DESIGN

AMIETE - ET (NEW SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

- a. A network N^\prime is dual of a network N if
 - (A) Both network have same mesh equation(B) Both network have same node equations(C) Mesh equation of one are the node equation of other(D) All of them are correct
- b. At time t=0, if the switching of source is done, then an initially relaxed inductor behave as a

(A) Short circuit	(B) Open circuit
(C) Voltage source	(D) Current source

c. If roots of characteristic equation lie on $j\,\omega$ axis, then system gives

(A) Sinusoidal response	(B) Unstable response
(C) Asymptotically stable response	(D) None

d. Laplace inverse of $4s/(s^2+4)$

(A) 2sin2t	(B) 4sin2t
(C) 2cos2t	(D) 4cos2t

e. Any nth order differential equation requires minimum

(A) n initial conditions to solve
(B) n+1 initial conditions to solve
(C) n-1 initial conditions to solve
(D) None

ROLL NO.

Code: AE59 Subject: CIRCUIT THEORY & DESIGN

f. The reciprocity relation for h parameters is

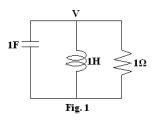
(A) $h_{12} = 0$	(B) $h_{21} = 0$
$(\mathbf{C}) \ \mathbf{h}_{12} + \mathbf{h}_{21} = 0$	$(\mathbf{D}) \ \mathbf{h}_{12} - \mathbf{h}_{21} = 0$

g. The step response of a second order Butterworth function exhibit an overshoot. As the order n increases, the overshoot ______

(A) decreases	(B) increases
(C) becomes zero	(D) is not affected

h. F(s)=(s+1)/(s+2) is

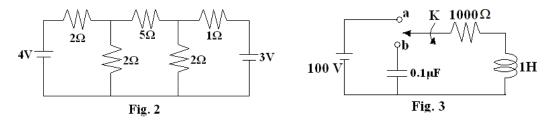
(A) RC impedance only(B) RL admittance only(C) RC admittance and RL impedance(D) RC impedance and RL admittance


- i. The Z and Y parameter matrices are inverse of each other. Hence Det Z is given by
 - (A) $\frac{Z_{11}}{Y_{11}}$ (B) $\frac{Z_{22}}{Y_{11}}$ (C) $\frac{Z_{22}}{Y_{22}}$ (D) $Z_{22}Y_{11}$

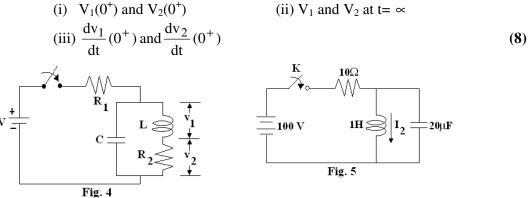
j. Consider $F(s) = \frac{s+3}{s^2+2s+1}$. In regard to F(s) being positive real function (PR).

- (A) F(s) is PR as denominator polynomial has its roots in the left half of the splane.
- (B) F(s) is PR as both numeretor and denominator polynopmials are Hurwitz
- (C) F(s) is not PR as the poles and zeros do not alternate on the negative real axis
- (**D**) F(s) is not PR as the ensignant $E(\omega)$ is negative for some values of ω

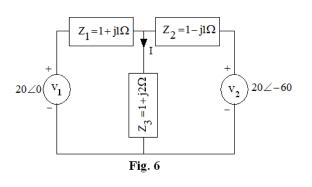
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


Q.2 a. Express voltage at node, V as a function of time if capacitor is initially charged at 10 volt and there is no initial current in the inductor (Fig.1) (10)

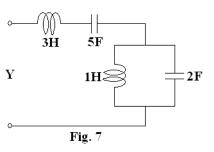
ROLL NO.


Code: AE59 Subject: CIRCUIT THEORY & DESIGN

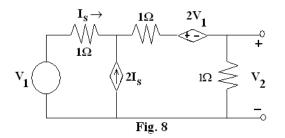
b. Find the value of voltage and power dissipation in 5 Ω resistors (Fig.2). (6)



b. In the accompanying network, (Fig.4) the switch K is closed at t=0 with zero capacitor voltage and zero inductor current. Solve for



- Q.4 a. Determine Lbf(t/a) in terms of Lf(t), given that a and b are constants. Also find $L^{-1}F(s/c)$ in terms of $L^{-1}F(s)$, where c is the constant. (8)
 - b. In the network shown in Fig.5, the switch K is closed and a steady state is reached in the network. At t=0, the switch is opened. Find an expression for the current in the inductor, $i_2(t)$ and $I_2(s)$. (8)
- Q.5 a. Calculate the current in the branch having impedance Z₃ using Thevenin's theorem (Fig.6).
 (8)



Code: AE59 Subject: CIRCUIT THEORY & DESIGN

b. Find the transform admittance of the circuit as shown in Fig.7.

- Q.6 a. Given $h_{11} = \frac{s(s^2 + 2)}{s^2 + 1}$, $Z_{22} = \frac{s^2 + 1}{s}$ and $Z_{21} = 1/s$ of a passive reciprocal two port network. Obtain the Y parameter. (6)
 - b. Relate ABCD parameters to other parameters as indicated; A, C in terms of Z-parameters, B in terms of Y-parameters and D in terms of h-parameters. (10)
- **Q.7** a. For the polynomial $P(s)=s^6+2s^5+6s^4+10s^3+11s^2+12s+6$. Determine the number of roots in right half of S-plane and on imaginary axis of S-plane if any. (8)
 - b. The given network contains resistors and controlled sources. For this network compute $G_{12} = V_2/V_1$ (Fig. 8). (8)

- **Q.8** a. Design T and π section high pass filter, if design impedance=600 Ω and cutoff frequency=5 kHz. (8)
 - b. Given $F(s) = \frac{6s^2 + 36s + 48}{s^2 + 3s}$. Find the continued fraction expansion and hence synthesise the network when F(s) is an admittance Y(s). (8)
- Q.9 An LC two port terminated in a resistor of one ohm has the transfer impedance $Z_{t}(s) = \frac{3}{2s^{4} + 2s^{3} + 10s^{2} + 9s + 3}$. Realise the network and obtain Z_d(s). (16)

AE59 / DEC. - 2011

(8)