ROLL NO. __

Code: AE52/AC52/AT52 Subject: C & DATA STRUCTURES

AMIETE – ET/CS/IT (NEW SCHEME)

Time	: 3 Hours	DECEM	BER 2011	Max. Marks: 100			
 NOTE: There are 9 Questions in all. Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper. Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else. The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination. Out of the remaining EIGHT Questions answer FIVE Questions, selecting at least TWO questions from each part. Each question carries 16 marks. Any required data not explicitly given, may be suitably assumed and stated. 							
Q.1	Choose the correct	or the best altern	native in the followin	ng: (2×10)			
	a. The number of swappings needed to sort the numbers 8, 22, 7, 9, 31, 19, 5, 13 in ascending order, using bubble sort is						
	(A) 11 (C) 13		(B) 12(D) 14				
	b. Preorder is same a	IS					
	(A) depth- first order(C) topological order		(B) breadth –first order(D) linear order				
	c. The depth of a complete binary tree with 'n' nodes is (log is to base two)						
	(A) $\log (n + 1) - 1$ (C) $\log (n - 1) + 1$	1	(B) log (n) (D) log (n) +1				
	d. The number of possible binary trees with 3 nodes is						
	(A) 12 (C) 5		(B) 13 (D) 15				
	e. The postfix equiva	alent of the prefix	* + a b - c d is				
	(A) a b + cd - * (C) ab + cd * -		(B) a b c d + - * (D) a b + - c d *				
	f. The minimum number of edges in a connected cyclic graph on n vertices is						
	(A) n -1 (C) n +1		(B) n (D) none of the abo	ove			
	g. Which of the following is useful in implementing quick sort?						
	(A) Stack (C) List		(B) Set (D) Queue				

ROLL NO.

			KULL NU			
	C	Code: AE52/AC52/AT52	Subject: C & DATA STRUCTURI	ES		
	h.	1. The concatenation of two lists is to be performed in O(1) time. Which of the following implementations of a list could be used?				
		(A) Singly linked list(C) Circular doubly linked list	(B) Doubly linked list(D) Array implementation of list			
	i.	The average number of comparisons performed by the merge sort algorithm, i merging two sorted lists of length 2 is				
		(A) 8/3 (C) 11/7	(B) 8/5(D) 11/6			
	j.	For merging two sorted lists of s require comparisons of	izes m and n into a sorted list of size m+n,	, we		
		(A) O(m) (C) O(m+n)	(B) $O(n)$ (D) $O(\log(m) + \log(n))$			
	Aı	PA nswer at least any TWO Quest	RT (A) ions. Each question carries 16 marks.			
Q.2	a.	Perform the following conversion	ons:			
		(i) $(4822.2)_{10} = (?)_2$				
		(ii) $(7541.45)_8 = (?)_{10}$		(5)		
	b.	List the different data types in C	2.	(5)		
	c.	Write a C program to read any and display their sum, difference	two floating point numbers from the key e, product and division.	board (6)		
Q.3	a.	Write a C program to find the la	argest value from four numbers.	(6)		
	b.	Explain the for-loop as used in 0 to10 using for loop.	C. Write a C program to display numbers	from (6)		
	c.	Explain the break statement in (C with its syntax and example.	(4)		
Q.4	a.	What is a recursive function? W number using recursive function	/rite a C program to find the factorial of a n.	given (6)		
	b.	A two dimensional array define	ed as A [3:7, -1:4] requires 4 words per me	emory		

b. A two dimensional array defined as A [3:7, -1:4] requires 4 words per memory cell. Find the location of A [5, 2] if the array is implemented in row major order. The base address is given as 200.

c. Write a C program for traversing the elements of an array. (4)

Q.5 a. Explain the following string functions. (6)

2

- (i) streat ()
- (ii) strcpy ()(iii) strrev ()

AE52/AC52/AT52 / DEC. - 2011

ROLL NO.

Code: AE52/AC52/AT52 Subject: C & DATA STRUCTURES

- b. What is a file? Explain any two file operations. (4)
 - c. Write a C program to declare a member of a union as a structure data type and to display the contents of the union. (6)

PART (B) Answer at least any TWO Questions. Each question carries 16 marks.

Q.6	a.	Write down Bubble sort algorithm. Sort the following list using Bubble and find its complexity. 15, 10, 20, 25, 5	sort (8)
		,,,,, _	(-)
	b.	Write an algorithm to delete the root of a heap.	(8)
Q.7	a.	Write an algorithm to insert a node at a specified position in a singly link list	st
			(8)
b. Convert the following infix expression into postfix expression			
		A + (B * C - (D/E ^ F) * G) * H	(8)
Q.8 a.		The following sequence gives the preorder and inorder traversals of a bin tree T :	nary
		Preorder: A B D G C E H I F	
		Inorder : D G B A H E I C F	
		Draw the tree. Also find the postorder of the tree.	(8)
	b.	What is a binary search tree? Insert the following numbers in to an en	npty

Q.9 a. Generate minimum cost spanning tree for the following graph using prim's algorithm. (8)

binary search tree: 40, 60, 50, 33, 55, 11.

b. Write a program in C to implement depth first search algorithm. (8)

3

(8)