ROLL NO.

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

AMIETE – ET/CS/IT (NEW SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

 (2×10)

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. If
$$u = x^y$$
 then the value of $\frac{\partial u}{\partial x}$ is equal to

(A) 0
(B)
$$yx^{y-1}$$

(C) xy^{x-1}
(D) $x^y \log(x)$

b. The value of integral
$$\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$$
 is equal to

(A)
$$\frac{3}{4}$$
 (B) $\frac{3}{8}$
(C) $\frac{3}{5}$ (D) $\frac{3}{7}$

c. If two eigen values of $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ are 3 and 15, then the third eigen value is

(A) 0	(B) 1
(C) -1	(D) 2

d. In solving simultaneous equations by Gauss-Jordan Method, the coefficient matrix is reduced to ______ matrix.

(A) Identity	(B) Diagonal
(C) Null	(D) None of these

ROLL NO.

Code: AE51/AC51/AT51

51 Subject: ENGINEERING MATHEMATICS - I

e. The differential equation $(x + x^8 + ay^2)dx + (y^8 - y + bxy)dy = 0$ is exact if

(A) b = 2a	(B) $b = a$
(C) $a = 2b$	(D) a = -b

f. The square matrix 'A' is called orthogonal if

(A)
$$A = A^2$$

(B) $A' = A^{-1}$
(D) $AA^{-1} = I$

g. The Bessel's equation of order 0 is given as

(A) xy'' + y'x + xy = 0	(B) $y'' + y'x + xy = 0$
(C) $xy'' + y' + xy = 0$	(D) $xy'' + y'x + y = 0$
h. The value of integral $\int_{0}^{2} \int_{0}^{3}$	$\int_{1}^{2} xy^{2} z dx dy dz is equal to$
(A) 22	(B) 26
(C) 5	(D) 25

i. If λ is an eigen value of a non-singular matrix A then the eigen value of $A^{-1}\ensuremath{\text{is}}$

(A)
$$1/\lambda$$
 (B) λ
(C) $-\lambda$ (D) $-1/\lambda$

j. The value of the integral $\int x^2 J_1(x) dx$ is

(A) $x^2 J_1(x) + c$	(B) $x^2 J_{-1}(x) + c$
(C) $x^2 J_2(x) + c$	(D) $x^2 J_{-2}(x) + c$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If
$$x + y = 2e^{\theta} \cos \phi$$
 and $x - y = 2ie^{\theta} \sin \phi$, show that

$$\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \phi^2} = 4xy \frac{\partial^2 u}{\partial x \partial y}$$
(8)

ROLL NO.

Code: AE51/AC51/AT51

Subject: ENGINEERING MATHEMATICS - I

 $u = a^{3}x^{2} + b^{3}y^{2} + c^{3}z^{2}$ where $x^{-1} + y^{-1} + z^{-1} = 1$, show that the b. If stationary value of u is given by $x = \frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c}$ (8)

Q.3 a. Evaluate the integral
$$\iint_{R} \sqrt{(x^2 + y^2)} dxdy$$
 by changing to polar coordinates, R

is the region in the x-y plane bounded by the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$. (8)

- b. Evaluate the integral $\iiint z dx dy dz$, where T is region bounded by the cone $x^{2} \tan^{2} \alpha + y^{2} \tan^{2} \beta = z^{2}$ and the planes z=0 to z=h in the first octant. (8)
- Q.4 a. Investigate the values of λ for which the following equations are consistent $(\lambda - 1)\mathbf{x} + (3\lambda + 1)\mathbf{y} + 2\lambda \mathbf{z} = 0,$ $(\lambda - 1)\mathbf{x} + (4\lambda - 2)\mathbf{y} + (\lambda + 3)\mathbf{z} = 0,$ $2x + (3\lambda + 1)y + 3(\lambda - 1)z = 0$

hence find the ratios of x:y:z when λ has the smallest of these values. (8)

b. Find the eigen value and eigen vector of the matrix
$$A = \begin{pmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{pmatrix}$$
. (8)

a. Find the solution of the differential equation (y-x+1)dy - (y+x+2) dx = 0. (8) **Q.5**

b. Solve the differential equation
$$\cot 3x \frac{dy}{dx} - 3y = \cos 3x + \sin 3x$$
, $0 < x < \pi/2$. (8)

Q.6 a. Find the general solution of the equation
$$y'' - 4y' + 13y = 18e^{2x} \sin 3x$$
. (8)

b. Solve
$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + y = \log x \frac{\sin(\log x) + 1}{x}$$
. (8)

a. Find the power series solution about the point $x_0 = 2$ of the equation **Q.7** y'' + (x - 1)y' + y = 0.(10)

b. Prove that
$$\int_{0}^{1} \frac{x^2}{\sqrt{1-x^4}} dx \times \int_{0}^{1} \frac{dx}{\sqrt{1+x^4}} = \frac{\pi}{4\sqrt{2}}$$
 (6)

Code: AE51/AC51/AT51 Subject: ENGINEERING MATHEMATICS - I

- **Q.8** a. Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$. (8)
 - b. Express $f(x) = x^4 + 2x^3 6x^2 + 5x 3$ in terms of Legendre Polynomial. (8)
- Q.9 a. Solve by Gauss-Seidel method, the following system of equations: (8) 28x+4y-z=32; x + 3y+10z = 24; 2x + 17y + 4z = 35.
 - b. Using Runge-Kutta method of fourth order, solve for y(0.1), y(0.2) given that $\frac{dy}{dx} = xy + y^2, y(0) = 1.$ (8)