ROLL NO.

Code: AE35/AC35/AT35

Subject: MATHEMATICS-II

AMIETE – ET/CS/IT (OLD SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

(2×10)

a. The complete solution of the $2\frac{\partial^2 z}{\partial x^2} + 5\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = 0$ is

(A)
$$z = f_1(y-2x) + f_2(y-\frac{1}{2}x)$$
 (B) $z = f_1(y-2x) + f_2(y+2x)$
(C) $z = f_1(y-\frac{3}{2}x) + f_2(y+\frac{3}{2}x)$ (D) $z = f_1(y-5x) + f_2(y+5x)$

b. Eliminating the arbitrary function from $z = f(x^2 - y^2)$, the partial differential equation is

- (A) $p^2 + q^2 = 0$ (B) $p^2 - q^2 = 0$ (C) yp + xq = 0(D) $x^2 + y^2 = 0$
- c. The probability of getting 4 heads in 6 tosses of a fair coin is

(A)
$$\frac{1}{2}$$
 (B) $\frac{15}{64}$
(C) $-\frac{1}{2}$ (D) $-\frac{15}{20}$

d. The mean of the Binomial distribution with n observations and probability of success p, is

1

(A)
$$\sqrt{n} p$$
 (B) $p q$
(C) $n p$ (D) $\sqrt{p} q$

AMIETE - ET/CS/IT (OLD SCHEME)

Code: AE35/AC35/AT35

Subject: MATHEMATICS-II

- e. The angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 z = 3$ at the point (2,-1,2) is
 - (A) $\cos^{-1}(\frac{8}{3\sqrt{21}})$ (B) $\sin^{-1}(\frac{8}{3\sqrt{21}})$ (C) 90^0 (D) 180^0
- f. If $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$, the value of curl \vec{F} is (A) Constant Vector (B) Variable Vector (C) Zero Vector (D) 2i + 3j + 4k

g. The values of a and b for which the surfaces $ax^2 - byz = (a + 2)x$ and $4x^2y + z^3 = 4$ cut orthogonally at (1, -1,2) are

(A) $a = \frac{5}{2}, b = 1$ (B) $a = 1, b = \frac{5}{2}$ (C) a = -1, b = -1(D) a = b = 0

h. The value of
$$\int_{0}^{2+i} (\overline{z})^2 dz$$
 along $2y = x$ is

(A)
$$\frac{14}{3} + i\frac{11}{3}$$

(B) $\frac{7}{2} + i\frac{5}{2}$
(C) $\frac{11}{3} - i\frac{5}{3}$
(D) $\frac{10}{3} - i\frac{5}{3}$

i. The residue of
$$\oint_{c} \frac{e^{z}}{(z+1)^{2}} dz$$
 at $|z-1| = 3$ is

(A) 1
(B)
$$2\pi i$$

(C) $-2\pi i$
(D) $\frac{2\pi i}{e}$

j. The value of
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos\theta}$$
 for $|z| = 1$ is

(A)
$$\frac{2\pi}{\sqrt{3}}$$
 (B) $2\pi i$
(C) 1 (D) -1

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks. a. If f (z) is analytic in a region R and |f(z)| is a non – zero constant in R, Q.2 then show that f(z) is constant in R. (8) b. State and prove Cauchy-Riemann equation in polar coordinates. (8) a. The probability that a pen manufactured by a MNC will be defective is $\frac{1}{10}$. Q.3 If 12 such pens are manufactured, find the probability that (i) exactly two will be defective (ii) at least two will be defective (iii) none will be defective (8) b. A variable X has the probability distribution : -3 6 $P(X=x): \frac{1}{6} \frac{1}{2} \frac{1}{3}$ Find E (X) and E (X^2). Hence evaluate E (2X+1)². a. A vector field is given by $\vec{F} = (\sin y) i + x(1 + \cos y) j$. Evaluate the line integral over the circular path given by $x^2 + y^2 = a^2$, z = 0. b. Using green's theorem, evaluate $\int [(y - \sin x) dx + \cos x dy]$ where c is the plane triangle enclosed by the line y = 0, $x = \frac{\pi}{2}$ and $y = \frac{2}{\pi}x$. **Q.5** a. Find $\iint \vec{F} \cdot \hat{n} \, ds$, where $\vec{F} = (2x + 3z)\hat{i} - (xz + y)\hat{j} + (y^2 + 2z)\hat{k}$ and S is the surface of the sphere having center at (3, -1, 2) and radius 3. b. Prove the following identity: $\operatorname{Curl}(f \vec{v}) = (\operatorname{grad} f) \times \vec{v} + f \operatorname{Curl} \vec{v}$ a. State and prove Cauchy's Integral theorem. b. Evaluate $\oint \frac{3z^2 + z}{z^2 - 1} dz$, where C is the circle |z-1|=1.

a. Expand cos z in a Taylor's series about $z = \frac{\pi}{4}$. (8) **Q.7**

AE35/AC35/AT35 / DEC. - 2011 3 AMIETE - ET/CS/IT (OLD SCHEME)

Code: AE35/AC35/AT35

Subject: MATHEMATICS-II

ROLL NO.

(8)

0.4 (8)

(8)

- (8)
 - (8)
- (8) **Q.6**

(8)

ROLL NO.

(8)

Code: AE35/AC35/AT35

Subject: MATHEMATICS-II

- b. Solve (mz ny)p + (nx lz)y = ly mx. (8)
- Q.8 a. Use the method of separation of variable to solve the partial differential

equation
$$3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0;$$
 $u(x,0) = 4e^{-x}$ (8)

- b. A tightly stretched string of length ℓ with fixed ends is initially in equilibrium position. It is set vibrating by giving each point a velocity $v_0 \sin^3 \frac{\pi x}{\ell}$. Find the displacement y (x, y). (8)
- Q.9 a. In a referendum 60% of voters voted in favour. A random sample of 200 voters was selected. What is the probability that in sample
 - (i) more than 130 voted in favour
 - (ii) between 105 and 130 inclusive voted in favour
 - (iii) 120 voted in favour

b. Determine the analytic function f(z), where f(z) = u(x, y) + i v(x, y), if $v(x, y) = log(x^2 + y^2) + x - 2y$. (8)