ROLL NO.

Code: AE27

Subject: DIGITAL HARDWARE DESIGN

AMIETE – ET (OLD SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Which of the following converter is used for quantization

(A)	CAD	(B)	DAC
(C)	CDA	(D)	ADC

b. In Gray code, bit-vectors corresponding to consecutive digit values differ by

(A) 4-bits	(B) 5-bits
(C) 1-bit	(D) 2-bit

c. Each time an event occurs on any of the signals in the sensitivity list, the statements within a ------ are executed in a sequential order.

(A)	procedure	(B) process
(C)	function	(D) block

d. Logic blocks, interconnection switches and I/O blocks are features of

(A) PLA	(B) ROM
(C) PSA	(D) FPGA

e. The number of decoder modules in a coincident decoder are

(A) 2	(B) 4
(C) 8	(D) 16

f. The output function of Moore machine is given by:

(A) $z(t) = H(S(-t))$	(B) $z(t) = H(S(t))$
(C) $z(t) = H(S(-t), x(t))$	(D) $z(t) = H(S(t), x(t))$

1

	Code	e: AE27 Subj	ect: DIGITAL HARDWARE DESIGN
	g.	module is the control unit	of microprogrammed controller.
		(A) Control-store address regist(C) Microcontroller	(B) Control-store address generator(D) Control store
	h.	A switching function is said t under any permutation of its va	o be if and only if it is invariant riables.
		(A) symmetric(C) cannonical	(B) unate(D) threshold
	i.	If the width of the trigger puls flip-flop, then flip-flop contin output. This feature is known as	se is greater than the propagation time of the nues to toggle and results in unpredictable
		(A) race around condition(C) stuck around condition	(B) unknown condition(D) None of the above
	j.	Datapaths provide connection system consisting of	between various components in a data sub-
		(A) switches and storage modul(C) switches and functional modul	es (B) wires and functional modules dules(D) wires and switches
		Answer any FIVE Questic Each question	ons out of EIGHT Questions. carries 16 marks.
Q	.2 a.	Explain module level, logical digital system.	level and physical level of implementation in a (5)
	b.	Mention any five features of his	gh level specification of combinational systems. (5)
	c.	Explain the following features i	n combinational systems:
		(ii) Tabulation method	(3+3 = 6)
Q	.3 a.	Describe a system that counts t	he number of 1's in a four-bit vector x. Give the
		(i) High-level using arithmeti	c expression
		(ii) Table of arithmetic expres	ssion (5)
	b.	Reduce the following switching $abc \ d + ab \ c + bc \ d + ab \ c$	expression to 4 literals: + $acd+a$ bcd (3)
	c.	Mention any two features of the (i) Methods to minimize a swi (ii) Symmetric function	e following: tching functions
		(iii) Threshold logic (iv) Unate function	(8)
	Q.4 a.	Expand the features of VHD related with a block diagram.	L. Explain how entity and architectures are (3+4)
Α	E27 / DI	EC 2011	2 AMIETE - ET (OLD SCHEME)

2

ROLL NO. _

Code: AE27

Subject: DIGITAL HARDWARE DESIGN

	b.	Give an example to illustrate mixed style modeling using VHDL.	(6)
	c.	Compare functions and procedures in VHDL.	(3)
Q.5	a.	Explain coincident decoding and tree decoding used in decoder networks.	(8)
	b.	What is a shift register? Explain various types of shift registers and give their respective applications.	r (8)
Q.6	a.	Compare Moore and Mealy state machines. Give their applications.	(6)
	b.	Explain any two methods used in simplification of incompletely specified synchronous machines.	d (6)
	c.	Explain the asynchronous state machine and its mode of operations.	(4)
Q.7	a.	Explain data subsystem. Mention various components used in data subsystem. Explain the role of storage and functional modules in data subsystem.	a a (8)
	b.	Write short notes on ASM Charts.	(4)
	c.	Compare explicit and implicit microinstruction sequencing.	(4)
Q.8	a.	Determine the state diagram for the sequential system described by the following expressions: $s(t+1) = \begin{cases} s(t) & \text{if } x = a \\ (s(t)+1) \mod 5 & \text{if } x = b \\ 2 & \text{if } x = c \end{cases}$ $z(t) = \begin{cases} 0 & \text{if } s(t) \text{is even} \\ 1 & \text{otherwise} \end{cases}$ The system has five states labeled 0,1,2,3, and 4.	e (6)
	b.	Give the advantages and disadvantages of programmable modules.	(6)
	c.	Explain various types of hazards in asynchronous sequential circuits.	(4)
Q.9	a.	Write short notes for any <u>THREE</u> of the following:	
		 (i) Microinstruction format (ii) Microinstruction timing (iii) Signal and variables in VHDL (iv) Priority Encoders (3×4 = 	12)
	b.	Express the complement of $E(x, y, z) = \prod M(1,4,6,7)$ as sum of minterms and product of maxterms.	d (4)

AEZ/ / DEC 2011

AMIETE - ET (OLD SCHEME)

3