ROLL NO.

AMIETE – ET (OLD SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Which of the following statements is incorrect?

(A) Doping pure semiconductor materials with small amount of donor impurities produces an n type semiconductor.

(B) Conduction with pure semiconductors is termed as intrinsic conduction.

- (C) At room temperature, pure semiconductors make excellent conductors.
- (D) The dominant charge carriers in a doped semiconductor are called majority charge carriers
- b. The forward voltage across a conducting silicon diode is about

(A) 0.3 V	(B) 1.7 V
(C) -0.7 V	(D) 0.7 V

c. If a transistor operates at the middle of the dc load line, a decrease in the current gain will move the Q point

(A)	off the load line	(B)	nowhere
(C)	downwards	(D)	upwards

d. Which type of special purpose diode is formed by a junction between a metal and layer of semiconductor?

(A) Schottky Diode	(B) Zener Diode
(C) Varactor Diode	(D) Tunnel Diode

e. Which type of special purpose diode has the characteristics of a voltage controlled capacitor?

(A)	Zener Diode	(B)	Schottky Diode
(C)	Varactor Diode	(C)	Tunnel Diode

AE25 / DEC.	- 2011
-------------	--------

1

AMIETE - ET (OLD SCHEME)

ROLL NO.

Code: AE25 Subject: PHYSICAL ELECTRONICS AND SOLID STATE DEVICES

f.	LEDs are fabricated from	
	(A) Silicon	(B) Germanium
	(C) SiorGe	(D) Gallium arsenide
g.	Early Effect in BJT refers to	
	(A) Avalanche Breakdown	(B) Thermal runaway
	(C) Base Narrowing	(D) Zener Breakdown
h.	For which of the following materials, is the Hall Coefficient zero	
	(A) Metal	(B) Insulator
	(C) Semiconductor	(D) Alloy
i.	LEDs are made out of	
	(A) Silicon	(B) Germanium
	(C) Gallium	(D) All of the above
j.	The has a physical chann	el between the drain and source.
	(A) D-MOSFET	(B) E-MOSFET
	(C) V-MOSFET	(D) MESFET

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Give schematic diagrams of Fermi Dirac distribution for intrinsic and extrinsic semiconductors at thermal equilibrium. Explain the variation in Fermi level with temperature in a doped semiconductor.
 (8)
 - b. Find the density of impurity atoms to be added to intrinsic silicon to convert it to
 - (i) 10Ω -cm p type material
 - (ii) 10Ω -cm n type material

Also determine the concentration of minority carriers. (Given data μ_p =500 cm²/V-s, μ_n =1300 cm²/V-s, n_i =1.5x10¹⁰/cm³) (8)

- Q.3 a. Discuss the two important mechanisms under which a reverse biased p-n junction can breakdown. Mention the differences between them.
 (8)
 - b. Show schematically the effects of forward and reverse bias on a p-n junction. Also give the energy band diagram and the mechanism of particle flow within the junction width.
- Q.4 a. Explain the various mechanisms of the switching cycle in the CE configuration of a Bipolar Junction Transistor.
 (8)

2

- b. Explain the following terms in context with BJT
 - (i) Emitter Injection Efficiency.
 - (ii) Kirk Effect

AE25 / DEC. - 2011

(8)

ROLL NO.

Code: AE25 Subject: PHYSICAL ELECTRONICS AND SOLID STATE DEVICES

Q.5	a.	Discuss the operating principle and some practical applications of charge transfer devices. (8)
	b.	Draw and explain the output characteristics and transfer characteristics of an n channel enhancement MOSFET. (8)
Q.6	a.	Explain the working of a Tunnel Diode and also explain how it exhibits negative resistance. (8)
	b.	Discuss the use of Semiconductor Lasers as an easily controlled source of low power coherent radiation. (8)
Q.7	a.	Describe the various steps involved in the formation of a typical monolithic integrated circuit. (8)
	b.	Distinguish between Hybrid circuits and Monolithic circuits. (8)
Q.8	a.	What do you understand by the term forbidden gap? Draw energy band diagrams for insulators, conductors and semiconductors. (8)
	b.	Find resistivity of intrinsic silicon at 300 K. What will be the change in resistivity if a donor impurity is added to the extent of 1 atom in 10^8 silicon atoms? (8)
Q.9		Write short notes on the following:
		 (i) Heterojunctions (ii) BJT Static Performance Parameters (iii) MOS as a capacitor

(iv) IMPATT diode (4×4)

3