ROLL NO.

Code: AE15

Subject: COMMUNICATION ENGINEERING

AMIETE – ET (OLD SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. In case a signal band limited to f_m is sampled at a rate less than $2f_m$, the constructed signal will be
 - (A) Distortionless
 - (**B**) Small in amplitude
 - (C) Having higher frequency suppressed
 - (D) Distorted

b. Intermediate Frequency (IF) in AM transmission is

(A) 455 kHz	(B) 400 kHz
(C) 325 KHz	(D) 10 kHz

c. Frequency shift keying is used mostly in

(A) Radio Transmission	(B) Telegraphy
(C) Telephony	(D) None of the above

d. VSB normally be used for

(A) Point to point communication	(B) Stereo broad casting
(C) Radio broad casting	(D) TV broad casting

e. One of the following can be used to generate SSB

(A) Grid Modulation	(B) Arm-Strong method
(C) Reactance Modulation	(D) Filter method

f. A 400W carrier is modulated to a depth of 75%, the total power is

(A) 512.5 W	(B) 600 W
(C) 625 W	(D) 650.5 W
AE15 / DEC 2011	1 AMIETE - ET (OLD SCHEME)

ROLL NO. __

Cod	le: AE15	Subject: COMMUNICATION ENGINEERING	
g.	A broad cast radio tran is 60. How much of th	nitter power is 10 KW. When the modulating percentage is carrier power?	
	(A) 3 KW (C) 9.65 KW	(B) 8.47 W (D) 5 KW	
h.	Modulation is the proce	s of	
	 (A) Superimposing a left (B) Superimposing a height (C) Carrier interruption (D) None of the above 	w frequency on a high frequency gh frequency on a low frequency	
i.	The modulation index	$n_{\rm f}$ of frequency modulation, is defined as	
	(A) δ/f_m	$(\mathbf{B}) \mathbf{V}_{\mathrm{m}}/\mathbf{V}_{\mathrm{c}}$	
	(C) f_c/f_m	(D) f_m/f_c	
j.	What is the duty cycle ms?	of radar with a Pulse Width (PW) of 3 μ sec and PRT of 6	
	(A) 0.0005(C) 0.1	(B) 0.00005(D) 2.0	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q 2.	a.	Explain the noise bandwidth.	(6)
	b.	Calculate the noise voltage at the input of television RF amplifier using a device that has a 200 ohm equivalent noise resistance and 300 ohm input	
		resistance. The band width of amplifier is 6 MHz and temperature is 17° C.	(6)
	c.	Describe the following: (i) Selectivity (ii) Sensitivity	(4)
			(4)
Q 3.	a.	Explain the block diagram of filter method of generating an SSB signal.	(8)
	b.	Explain the circuit diagram of foster-seeley discriminator for the FM demodulation.	(8)
Q 4.	a.	Draw and explain the block diagram of FM receiver.	(8)
	 b. In a broadcast super-heterodyne receiver having no RF amplifier, the loaded Q of the antenna coupling circuit (at the input to the mixer) is 100. If the intermediate frequency is 455 KHz, calculate (i) The image frequency and rejection ratio at 1000 KHz. (ii) The image frequency and its rejection ratio at 25 MHz. 		(8)
AE15 /	DI	EC 2011 2 AMIETE - ET (OLD SCHEME)	

ROLL NO. _

Cod	e: AE1	5 Subject: COMMUNICATION ENGINEERING	
Q5.	a. An a the s and $P_1 =$	malog signal is band limited to B Hz, sampled at the Nyquist rate, and samples are quantized into 4 levels. The quantization levels Q1, Q2, Q3 Q4 (messages) are assumed independent and occur with probabilities $P_4 = 1/8$ and $P_2 = P_3 = 3/8$. Find the information rate of the source.	(8)
	b. Drav dem	<i>w</i> and explain the block diagram of delta modulation. Also write its merits an erits.	id (8)
Q6.	a. State	e and explain sampling theorem. Also explain flat top sampling	(8)
	b. Drav	w and explain the block diagram of PCM communication system.	(8)
Q7.	a. Writ	te short note on any <u>TWO</u> :	
	(i) (ii) (iii)	Envelop detector Pre-emphasis and de-emphasis Ring modulator.	(8)
	b. Desc mess the a	cribe briefly, Shannon-Fano, algorithm for efficiency encoding of sage. Using this algorithm obtain the code for a source emitting six sage with probability $1/2$, $1/4$, $1/8$, $1/16$, $1/32$ and $1/32$. Calculate average information per message and efficiency of this code.	(8)
Q8.	a. Desc	cribe the block codes coding and decoding.	(8)
	b. Obta	in the impulse response of matched filter.	(8)
Q9.	a. Drav	w and explain the block diagram of MTI Radar.	(8)
	b. Calc banc	culate the minimum receivable signal in radar receiver which has an IF lwidth of 1.5 MHz and a 9-dB noise figure.	(4)
	c. Writ (i) (ii)	e short notes on PAM PWM	(4)

3