ROLL NO. _

Code: AE06/AC04/AT04

Subject: SIGNALS & SYSTEMS

AMIETE – ET/CS/IT (OLD SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

 (2×10)

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Signal $x(t) = e^{-at} u(t)$, a > 0 is a

(A) Power signal	(B) Energy signal
(C) neither (A) and (B)	(D) can't decide

b. The Fourier transform of an impulse function is

(A) $\delta(w)$	(B) 2πw
(C) 1	(D) sinc(w)

c. $\delta(n - N) * \delta(n + N)$ will result in

(A) Zero	(B) Always 1
(C) N	(D) can't decide from given data

- d. Convolution is used to find ______ of an LTI System.(Fill the blank)
 - (A) Impulse response(B) Frequency response(C) time response(D) phase response
- e. Z-transform of x (-n) will be

(A) $X(Z^{-1})$	(B) X (-1/Z)
(C) $X (1 / Z^{-1})$	(D) Z

f. Laplace Transforms of the functions $x(t) = 4 \sin(100t)u(t)$ is

(A)	$100 / (s^2 + 400^2)$	(B) $400 / (s^2 + 100^2)$
(C)	$100 / (s + 400)^2$	(D) $400 / (s + 100)^2$

g. The signal y(t) = sin(x(t)) is

(A)	linear, causal	(B) linear, non- causal
(C)	non- linear, causal	(D) non-linear, non-causal

h. The ideal band-limited interpolation uses

(A)	sinc function	(B) sine wave
(C)	square wave	(D) pulse

Code: AE06/AC04/AT04

j. For a random variable f(x) the integral $\int x f(x) dx$, defines

(A) variance	(B) mean
(C) pdf	(D) co-variance

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Define Signal. Give detailed classification of various signals with example. (6)

b.
$$x[n] = \begin{cases} 0 & \text{if } n < 2 \\ 2n - 4 & \text{if } 2 \le n < 4 \\ 4 - n & \text{if } 4 \le n \end{cases}$$

(i) Sketch x(n). (ii) Sketch y(n) = x(n-1). (4)

c. The response of an LTI system to a step input, x(t) = u(t) is $y(t) = (1-e^{-2t})u(t)$. What is the response to an input of x(t) = 2u(t) - 4u(t-1)? (6)

Determine the Fourier series representation for the above signal. (10)

- b. Consider an LTI system with impulse response $h(n) = a^n u(n)$, -1 < a < 1, with the input signal $x(n) = \cos(2\pi n / N)$. Determine y(n). (6)
- Q.4 a. State and explain convergence conditions for continuous-time Fourier transform. (3)

ROLL NO.

Code: AE06/AC04/AT04

b.

Subject: SIGNALS & SYSTEMS

- b. Consider a stable LTI system characterized by the differential equation $\frac{\mathrm{d}\mathbf{y}(t)}{\mathrm{d}t} + 5\mathbf{y}(t) = \mathbf{x}(t)$ Determine (i) frequency response and (ii) impulse response. (5) c. State and prove Parseval's theorem for continuous time periodic signal. (8) Q.5 a. Determine the discrete -time Fourier transform of unit-step sequence x(n) = u(n). Comments on the result obtained. (8) b. For the signal $x(n) = \cos \omega_0 n$ with $\omega_0 = 2\pi/5$, obtain and plot $X(e^{j\omega})$ (4) c. Draw low-pass filter magnitude characteristics with all necessary tolerance limits. (4) **Q.6** a. Describe discrete – time processing of continuous- time signals in detail, with necessary block diagrams. (8) b. For the first-order LTI system described by y(n)- ay(n-1) = x(n) with |a| < 10, obtain magnitude and phase of the frequency response. (8) **Q.7** a. Obtain z- transform for (i) $x_1(n) = (1/3)^n [\sin(\pi n / 4)] u(n)$ (ii) $x_2(n) = -a^n u(-n-1)$ Plot pole -zero diagram and state ROC for both. (8) b. State initial value theorem for Z-transform.List its utility. For the sequence $x(n) = 7 (1/3)^n u(n) - 6 (1/2)^n u(n)$, find x(0) using initial value therom. (8)
- a. For signal $x(t) = e^{-at} u(t)$, determine (i) Fourier transform (ii) Laplace **Q.8** transform. If a = 0, whether both transforms exit? If, yes determine the same. (8)

Obtain the Laplace transform of the square wave given in above figure. (8)

- 0.9 a. Write short note on:-(i) Gaussian random variable. (ii) Joint probability. (8)
 - b. The pdf of random variable x is given by $f_x(x) = k$, $a \le x \le b$ and $f_x(x) = 0$, otherwise.

Determine (i) the value of constant k.

(ii) when a = -1 and b = 2, calculate $p(|x| \le 0.5)$. (8)