ROLL NO.

Code: AE01/AC01/AT01

Subject: MATHEMATICS-I

AMIETE - ET/CS/IT (OLD SCHEME)

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:
a. The value of
$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx dy$$
 is
(A) -1
(C) 2
(B) 1
(C) 2
(D) -2
b. If $u = \sin^{-1}(x - y)$, $x = 3t$ and $y = 4t^{3}$ then the value of $\frac{du}{dt}$ is
(A) 1
(B) 0
(C) $\frac{3}{\sqrt{1 - t^{2}}}$
(D) $-\frac{3}{\sqrt{1 - t^{2}}}$
c. The value of $\lim_{\substack{x \to 1 \\ y \to 2}} \frac{3x^{2}y}{x^{2} + y^{2} + 5}$ is
(A) $\frac{3}{5}$
(B) $-\frac{3}{5}$
(C) $\frac{2}{5}$
(D) $-\frac{2}{5}$
d. If $f(x, y) = 0$, then $\frac{dy}{dx}$ is equal to
(A) $\frac{dy}{dt} \frac{dt}{dx}$
(B) $-\frac{dy}{dt} \frac{dt}{dt} \frac{dt}{dx}$
(C) $\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}}$
(D) $-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}$

AE01/AC01/AT01 / DEC. - 2011

1

AMIETE - ET/CS/IT (OLD SCHEME)

ROL	L NO.

Code: AE01/AC01/AT01

Subject: MATHEMATICS-I

e. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$ is

- f. Two matrices are said to be equal if
 - (A) both are of same order
 - (B) both are of same order and the position of corresponding elements are equal
 - (C) one should be identity matrix
 - (**D**) one should be null matrix

g. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$
 then the value of A^8 is

(A)
$$\begin{bmatrix} 625 & 0 \\ 0 & 625 \end{bmatrix}$$
(B) $\begin{bmatrix} 600 & 0 \\ 0 & 600 \end{bmatrix}$ (C) $\begin{bmatrix} -625 & 0 \\ 0 & 625 \end{bmatrix}$ (D) Identity matrix

h. The solution of the differential equation

$$\frac{d^{3}y}{dx^{3}} - 6\frac{d^{2}y}{dx^{2}} + 11\frac{dy}{dx} - 6y = e^{-2x} + e^{-3x} \text{ is}$$
(A) $c_{1}e^{x} + c_{2}e^{2x} + c_{3}e^{3x} - \frac{1}{120}(2e^{-2x} + e^{-3x})$
(B) $c_{1}e^{-x} + c_{2}e^{-2x} + c_{3}e^{-3x} - \frac{1}{120}(2e^{-2x} + e^{-3x})$
(C) $2e^{x} + 5e^{2x} + 7e^{3x} + \frac{1}{120}(2e^{-2x} + e^{-3x})$
(D) $e^{x} + e^{2x} + e^{3x} - \frac{1}{120}(2e^{2x} + e^{3x})$

i. The solution of
$$\frac{dy}{dx} + \frac{y \cos x + \sin y + y}{\sin x + x \cos y + x} = 0$$
 is

(A) x + y = c(B) x - y = c(C) $y \sin x + (\sin y + y) x = c$ (D) $2 \sin x + 3 \cos y = c$

ROLL NO.

j. The value of $\frac{d}{dx}(x^n J_n(x))$ is (A) $J_n(x)$ **(B)** $x^{n}J_{n-1}(x)$ **(D)** $[J_n(x)]^2$ (C) $J_{-n}(x)$

Answer any FIVE Questions out of EIGHT Questions. Each Question carries 16 marks.

Q.2 a. If
$$u = x^2 - y^2$$
, $v = 2xy$ and $f(x, y) = \theta(u, v)$, then show that by
substitution that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 4(x^2 + y^2) \left(\frac{\partial^2 \theta}{\partial u^2} + \frac{\partial^2 \theta}{\partial v^2} \right)$ (8)

b. Divide 24 into three parts such that the continued product of the first, square of the second and cube of the third may be maximum. (8)

Q.3 a. Evaluate
$$\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z \, dx \, dy \, dz$$
 (8)

b. If
$$u = \frac{1}{\sqrt{t}} e^{-\frac{x^2}{4a^2t}}$$
, then prove that $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$. (8)

Q.4 a. Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$
 by using elementary –row transformation method. (8)

transformation method.

b. Determine two non-singular matrix P and Q such that PAQ is in normal form, where A = $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$ (8)

a. Find the characteristic equation of the matrix, $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence Q.5 -1

compute
$$A^{-1}$$
. Also find the matrix represented by
 $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$. (8)

ROLL NO.

Code: AE01/AC01/AT01

Subject: MATHEMATICS-I

b. Test for consistency/ inconsistency and solve the following system of equations 2x + 3y + 4z = 11; x + 5y + 7z = 15; 3x + 11y + 13z = 25 (8)

Q.6 a. Solve in series the equation
$$(1 + x^2) \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0$$
 (8)

b. Prove that
$$J_{-n}(x) = (-1)^n J_n(x)$$
 where n is positive integers. (8)

Q.7 a. Prove that
$$xP'_{n}(x) - P'_{n-1}(x) = nP_{n}(x)$$
 (8)

b. Express
$$f(x) = 1 - 2x + x^2 + 5x^3$$
 in term of Legendre polynomials. (8)

Q.8 a. Solve the differential equation
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x e^x \sin x$$
 (8)

b. Solve by the method of variation of parameters
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$$
. (8)

Q.9 a. Solve the differential equation
$$(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$$
 (8)

b. Solve
$$\frac{d^2 y}{dx^2} + y = \csc x$$
 (8)