ROLL NO.

Code: AC10

Subject: DISCRETE STRUCTURES

AMIETE – CS (OLD SCHEME)

Time: 3 Hours

AC10 /

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Let $A = \{1, 2, 3, 4, 5\}$. Which of the following sets is not equal to A?

$(\mathbf{A}) \{1, 2, 3, 4, 5\}$	(B) {x x is a real number and $x^2 \le 25$ }
$(\mathbf{C}) \{5, 4, 3, 2, 1\}$	(D) $\{2, 3, 4\}$

- b. The contrapositive of the statement ``If I am not President, then I will walk to work'' is
 - (A) If I do not walk to work, then I am President.
 - (B) If I am President, then I will not walk to work
 - (C) If I walk to work, then I am not President.
 - (D) If I walk to work, then I am President.
- c. If no letter or digit can be repeated, how many license plates having 2 letters followed by 4 digits can be manufactured?

(A) 6,760,000	(B) 3,276,000
(C) 3,72600	(D) 327600

d. How many edges are there in a graph with 10 vertices, each of degree 6?

(A) 60	(B) 30
(C) 20	(D) 100

e. To make $R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (2,3), (3,1), (3,2)\}$ a binary equivalence relation on the set $A = \{1, 2, 3, 4, 5\}$, choose the set that one needs to add to R.

(A) {(4,4), (5,5)}		(B) {(5,5), (1,3)}
(C) {(4,4), (5,5), (1,3) }		(D) $\{(4,4), (1,2,3)\}$
DEC 2011	1	AMIETE - CS (OLD SCHEME)

ROLL NO. ___

Code	: AC10	Subject: DISCRETE STRUCTURES	
f.	f. Consider a poset (A, R), where A is a finite set and R is a relation on the set A. Then, the greatest element of A is		
	(A) any $a \in A$ such that xRA (B) any $a \in A$ such that aRx (C) the same as the upperbout (D) the same as the lowerbout	$\mathbf{i}, \forall x \in A$ $\mathbf{i}, \forall x \in A$ and of a subset B of A and of a subset B of A	
g.	g. Domination law in boolean attributes is		
	(A) $x.0 = 0$ (C) $x.1 = x$	(B) $x + x = x$ (D) $xy = yx$	
h.	n. A rooted tree is a full <i>m</i> -ary tree, if		
	 (A) every external vertex has (B) every internal vertex has (C) every external vertex has (D) every internal vertex has 	at most <i>m</i> children. at most <i>m</i> children. exactly <i>m</i> children. exactly <i>m</i> children.	
i.	A phase structure grammar C	Fis defined to be a	
	(A) 3 tuple $(V, S, \rightarrow), V \subseteq S$ a (B) 4 tuple $(V, S, v_o, \rightarrow), V$ is relation on V^* (C) 5 tuple $(V, S, v_o, \rightarrow, \leftarrow)$ \leftarrow are finite relations on V^* (D) 4 tuple $(V, S, v_o, \rightarrow), V$ is relation on V^*	and \rightarrow is a finite relation on V^* a finite set, $S \subseteq V, v_0 \in V - S, \rightarrow$ is a finite , V is a finite set, $S \subseteq V, v_0 \in S - V, \rightarrow$ and an infinite set, $V \subseteq S, v_0 \in V - S, \rightarrow$ is a finite	
j.	The explicit version of the re	cursive relation $a_{12} = 2 \times 5$. $a_{n-1}, a_1 = 4$, is	
	(A) $a_n = 4 \times 10^n$	(B) $a_n = 10^n$	
	(C) $a_n = 4^n$	(D) $a_n = (4 \times 10)^n$	
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.			
Q.2 a.	A survey has been taken respondent was asked to cl major method of traveling to The results were reported as AUTOMOBILE: 100 peopl AUTOMOBILE: 15 people; all the three methods, 5 per form? C 2011	on the methods of commuter travel. Each neck BUS, TRAIN or AUTOMOBILE as a o work. More than one answer was permitted. follows: BUS: 30 people; TRAIN: 35 people; e; BUS and TRAIN: 15 people; BUS and TRAIN and AUTOMOBILE: 20 people; and ople. How many people completed a survey (6) 2 AMIETE - CS (OLD SCHEME)	

Code: AC10

Subject: DISCRETE STRUCTURES

- b. The Harmonic numbers H_j , $j = 1, 2, 3, \cdots$ is defined by $H_j = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{j}$. Use, mathematical induction to show that $H_2n \ge 1 + \frac{n}{2}$. (8)
- c. A label identifier for a computer program consists of one letter followed by 3 digits. If repetitions are allowed, how many distinct label identifiers are possible? (2)
- **Q.3** a. Derive the explicit formula for the recursive relation: $a_n = 4a_{n-1} + 5a_{n-2}, a_1 = 2, a_2 = 6$. (5)
 - b. Show that if any 8 positive integers are chosen, two of them will have the same remainder when divided by 7. (4)
 - c. Define Euler circuit and Euler path. Which of the following graphs have an Euler circuit and Euler path: (7)

Q.4 a. Draw a digraph for each of the following relations:

- (i) Let $A = \{a, b, c, d\}$ and let $R = \{(a, b), (b, d), (a, d), (d, a), (b, a), (c, c)\}$
- (ii) Let A = $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and let ^x R_Y, wherever Y is divisible by x
- (iii) Determine which of the relations are reflexive, transitive, symmetric and antisymmetric. (3+3+2)
- b. Prove that a graph G is a tree iff G has no cycles and |E| = |V| 1. (8)
- Q.5 a. Let $S = \{a, b, c\}$ and A is the power set of S. Draw the Hasse diagram of the poset A with the partial order \subseteq (set inclusion). (5)
 - b. Simplify the following boolean expressions using Karnaugh maps.
 - (i) $xy\overline{z} \mid x\overline{y}\overline{z} \mid \overline{x}yz \mid \overline{x}\overline{y}\overline{z}$
 - (ii) $x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z} + \overline{x}\overline{y}\overline{z}$ (8)

AC10 / DEC. - 2011

3

ROLL NO.

b. Choose 4 cards at random from a standard 52-card deck. What is the probability that 4 kings will be chosen? (6)

4